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A b s t r a c t  

A weighting scheme for use in tangent-formula phase 
development and refinement is derived by application of 
joint probability distribution functions. It may easily be 
incorporated in existing computer programs. A weight- 
ing scheme for Fourier synthesis is also described; it 
takes into account the uncertainty of the phases 
assigned by a direct procedure. 

1. I n t r o d u c t i o n  

When G = 2N-l/21EhEkEh_k I is a priori known, the 
triple-phase invariant ~p = ~Ph -- qTk -- (Ph-k has a 
probability distribution about 0 (modulo 2n) of the 
form (Cochran, 1955) 

P(~pl G) ___ [2 rd0(G)] -1 exp(G cos ~p), 

with variance (Karle & Karle, "1966) 

(1) 

76 2 oo i2r(G) 
V(G) = -~- + [lo(G)] -~ E 

r 2 

~-'~ Izr+'(G) (2) 1 4  ~ Io ~ G ) ~ ~1 
(2r + 1) z" r=O 

I,  are the modified Bessel functions of the first kind of 
order r. If ~ and q~-k are known, the conditional distri- 
bution of ~Oh is given by 

P ( ~ I ~ ,  qTh-k, G) ~-- [27do(G)] -* exp[G cos (qTh- Oh)], 

(3) 

where Oh = ~ + Oh-k, with variance given again by (2). 
When several pairs of known phases are known (3) is 
replaced by 

P(~Oh] {~0k: (fi~--kl, Gj }) ~' [2 7~/o(")] -1 exp[ a cos (¢Ph -- 0h)], 

(4) 

where {~ :  ~ - k :  Gj} denotes the set of phases and 
magnitudes a priori known. Furthermore, 8h, the most 
efficient value for 0~, is given by (Karle & Hauptman, 
1956) 

0567-7394/79/050757-08501.00 

~.. IEkjEh-kjl sin (~Pk, + ~Ph-k,) 
: Th 

tan oh= = - - ;  (5) 
Z IEkjEh-kjl COS (qTkj + qTh-kj) Bh 
J 

and the corresponding variance for ¢ph is given again by 
(2), but 

ah = 2N-U21Ehl (Th 2 + B~,) 1/2 (6) 

replaces G. 
Unfortunately, in the practical procedures for phase 

determination the premise on which (4), (5) and (6) is 
based is not fully satisfied. In fact the phases ~Pk: ~Ph-k, 
are themselves uncertain and have an associated 
variance. So weighted tangent formulae such as 
(Germain, Main & Woolfson, 1971) 

tan ~Ph : 

Wkj Wh-k~lEkjEh-kjl sin (~pk, + ~Ph-k) 
j Th' 

E Wkj Wh-kjlEkj Eh--kj] COS ((Pkj "4- (Ph-kj) B~ 

(7) 

can usefully replace (5). The form of weighting should 
ensure that poorly determined phases have little effect 
in the determination of other phases. Furthermore, 
since all determined phases are included in the right 
hand side of (7), the phase determination process may 
be very efficient. Of course, a necessary condition is 
that theWweight Wk is proportional to the accuracy of 
the phase ~ .  

Several weighting schemes have been proposed. 
Germain, Main & Woolfson (1971) suggested 

Wh = tanh {N-1/ZlEh I (T~ 2 + Bg2)}. (8) 

Weighting criterion (8) was criticized by Schenk (1972) 
and was revealed as unrealistic in several cases. A 
procedure afterwards adopted by Germain, Main & 
Woolfson was 

Wh = min (0.2a, 1.0), (9) 

which proved a more efficient criterion than (8). Its use 
however is not able to avoid the problem that in multi- 
© 1979 International Union of Crystallography 
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solution procedures the wrong solutions are often 
characterized by phases, with which final values of st 
are associated, which are larger than would be expected 
from theory. Furthermore, weights easily become and 
stay at unity during phasing procedure. 

The weighting scheme in tangent refinement is not a 
trivial topic. It has been noted in fact (Busetta, 1976; 
Lessinger, 1976) that the true phases are not stable 
under some weighted tangent refinement schemes 
whereas they remain stable if more suitable weighting 
criteria are used. Recently Hull & Irwin (1978) 
proposed a more elaborate weighting scheme. As 
shown by Germain, Main & Woolfson (1970), when 
the values Gh.k~ are a priori known and the phases ~0k,, 
~0h-kj are unknown but are supposed to satisfy Cochran 
(1955) distribution, then the expected value of (~i~ is 
given by 

I1 (Gh.k,) I1 (Gh.k) 
% = Z + Y Gh, k, G k, (10) 

j i c j  /0(Gh,k,) I0 (Gh,k) 

On the other hand, if the phases ~0k,, ~0h-k~ are supposed 
to be a random set, the expected value of~t~ is given by 

~tZr = ~ G~,kj. (11) 
J 

Hull & Irwin's (1978) weighting scheme is the 
minimum of that given by (9) and 

x 

Wh' = q:e -x2 fexp  t 2 dt, (12) 
0 

where x = ([h/(~E and gt is a normalizing factor chosen 
so that W' = 1 when x = 1. W'  has its maximum at 
x = 1: when ah > a E or (th < a e, W < 1, supporting a 
more realistic agreement between the calculated and the 
expected values of ah. 

Hull & Irwin's (1978) scheme can be considered 
more useful than preceding ones; the authors showed in 
fact that a method which constrains a~ to equal a~ 
during tangent-formula refinement is equivalent to 
forcing the Sayre equation to be obeyed. The scheme 
however appears criticizable in two aspects: (i) the form 
of (12) appears to be rather arbitrary. Many other 
functions can be found which take their maximum at 
a = a~ where they can assume unitary value; (ii) the 
scheme assigns W after an a posteriori comparison of 
the experimental value of a with a e. It should therefore 
be useful to introduce a scheme which leads to more 
realistic values of a just by taking into account the 
'uncertainty'  of the various 'known'  phases. This is 
exactly the first aim of this paper. In order to make 
clear the mathematical approach, we describe in {} 2 
some important results in the statistics of directional 
data which are useful for our purposes. In the following 
we will often use the notation R = [EI. 

2. Some results in the theory of distributions 

2.1. The wrapped normal distribution 
A useful representation of this density is 

WN(P,O)= 1 + 2 Z P p2cos p(~o--O /2zc, (13) 
p = l  

with 0 < ~0 _< 2r ,  0 _< p _< 1, p = exp( -az /2 ) .  The 
distribution is unimodal and is symmetric about 0. It 
tends to uniform distribution as p ~ 0 (or a -, c~) while 
it tends to concentrate at one single point when p ~ 1. 
From (13), 

(cos ~0) = p cos 0, (sin (0) = p sin 0, (14) 

var[cos ~0] =½(1 + p4cos 20)--p2cos20, (15) 

var[sinq~]=½(1--p4cos20)--p2sin20. (16) 

2.2. Von Mises distribution 
The Von Mises (1918) distribution 

M(~o;O,G) = [2 rd0(G)]- '  exp [G cos (~0 - 0)] (17) 

is unimodal and symmetric about 0. The mode is at 
~0 = 0 and the antimode is at ~0 = 0 + ~z. The ratio of the 
density at the mode to the density at the antimode is 
given by exp (2G) so that the larger the value of G the 
greater the clustering around the mode. For G = 0, 
M(q~;O,G) reduces to the uniform distribution. From 
(17), 

I,(G) I,(G) 
(cos ~o) - - -  cos 0, (sin ~o) - - -  sin 0, (18) 

Io(G) Io(G) 

l [l I2(G) 
var[cos ~o] = ~  + Io(G) cos 2 

_ [ II(G) ] z 
c°s2 0, 

1 [  Iz(G) ] 
var[sin ~0] = ~ 1 Io(G---- ~ cos 20 

_ [  I ' ( G ) ]  2 
sin2 0" 

(19) 

(20) 

The Fourier expansion of (17) gives 

M(~o;O,G)= 1 + io-(G ) Ip(G)cos[p(~o-O)] /2zr. 
p = l  

(21) 
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2.3. Relation between Von Mises and wrapped normal 
distributions 

Von Mises and wrapped normal distributions can be 
made to approximate each other closely. To this end 
(Stephens, 1963), (21) can be compared with (13). 
When p = 1 the coefficients in (13) and (21) agree if 

p=I~(G)/Io(G). (22) 

The coefficients for p > 1 will agree approximately if 

[I,(G)/Io(G)]P2~Ip(G)/Io(G). (23) 

Exact agreement occurs between the two distributions 
when G = 0 (both become the uniform distribution). 
When G is large t he  left hand side of (23) may be 
approximated by 

1 1 1 ]P2, 
1 - 2 b  - . . . .  

so that the asymptotic result is (1 - 1/2G) p2 ~_ 1 - 
p2/2G. This is also the asymptotic value of the right 
hand side if Ip is expanded according to (Abramowitz 
& Stegun, 1970) 

Ip(G) ,-, (27vG) -1/2 exp (G) 11 - 

i -  

(4p 2 1) 

L 8G 

(4p 2 -  1) (4p 2 -  9) ] 

+ 2! (8G) 2 . . . .  ]" 

It appears therefore that the agreement should be good 
for all G's. Stephen's (1963) calculations are quite satis- 
factory; the 'best fit' between the two distributions 
occurs when (22) is closely satisfied. In order to 
translate those results in terms of the parameters 
usually involved in direct procedures for phase 
estimation we note: (a) the expected values of ~0, cos ~0, 
sin ~0 coincide when calculated according to M(~o;O,G) 
and WN[II(G)/Io(G),O]; (b) in the same condition the 
calculated variances are in good agreement. In Table 1 
are shown, for given values of G, the cosine and sine 
variances calculated according to M(~0;0,G) (column 

Table 1. Cosine and sine variances for given values of 
G 

VM; calculated according to M (~0; 0, G). Vw; calculated according 
to WNII , (G) / Io(G)I .  

G V M (cos) V w (cos) V M (sin) V w (sin) 

0-0 0.500 0.500 0.500 0.500 
1.0 0.354 0.321 0.446 0.480 
2.0 0.164 0.132 0.349 0.381 
3-0 0.074 0-059 0.270 0.285 
4.0 0-039 0.033 0.216 0.222 
5.0 0.023 0.020 0.179 0.181 
6.0 0.016 0.014 0.152 0.154 
7.0 0.011 0.010 0.132 0.133 
8.0 0.009 0.008 0.117 0.118 

labelled VM) and to WlV[II(G)/lo(G),O] (column label- 
led Vw). 

2.4. Convolutions of wrapped normal distributions 

Let ~01, ~02,..., tpn be n mutually independent variables 
and let 0 i have probability distribution WN(Pi,Oi). Then 
the variable sum ~1 + ~02 + "'" + ~,  has probability 
distribution function WN(p~p2...p,, 01 + 02 + ... + 
0n). 

2.5. Convolutions of Von Mises distributions 

If tpl and ~o 2 are two mutually independent variables 
distributed according to M(~o;O1,G1) and M(qJ;O2,G2) 
respectively, the probability distribution function of ¢ = 
(Pl + (P2 is given by 

P((p, + qh) = [2rdo(G1) Io(G2)]-' Io[ G 2 + G 2 + 2G 1 G2 

× cos (tp-- 01 -- 02)], (24) 

which is not a Von Mises distribution. Equation (24), 
however, can be approximated by a Von Mises distri- 
bution by applying the results described in §§ 2.3 and 
2.4. We first approximate M(~0; 01, G~) and M(q~; 02, G2) 

by WN[II(GI)/Io(G1),O I] and WN[II(GE)/Io(G2),021 , 
respectively. Because of § 2.4, the convolution of these 
two distributions is the wrapped normal distribution 

[I1(G1) Io(G2),I'(G2) ) 

which in turn may be approximated by the Von Mises 
distribution M(~0; 01 + 82, G), where G satisfies 

DI(G) = DI(G,) DI(G2). (25) 

In (25) and in the following formulae, Dp(Gi) stands for 
Ip(Gi)/Io(Gt). This result may be generalized; let (Pl, 
(P2 . . . .  , q~n be n mutually independent variables and let 
any (Pi be distributed according to M(~i;Oi,Gl). Then 
the variable sum (p = qh + (P2 + " "  + q~n can be approxi- 
mated by the Von Mises distribution M((p; 01 + 02 
+ . . .  + 0 n, G) where G satisfies 

DI(G) = DI(G,) DI(GD...DI(G,). (26) 

3. S o m e  formulae  

In the main text, evaluation of the integral 

- -  _, C k cos (~o + d~ (27) 
2re 

o 
is of frequent occurrence. For real C k in (27) we define 
X and ~ by 

X = Z CI, Ct cos (a k - a t , (28) 
l 
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Z Ck COS a k 
k 

dj-- arc cos 
X 

From (28) and (29) we have 

(29) 

C k cos (~o + a k) = X cos (O + ~), 
k 

so that 

f exp C k COS ((/7 + ttk) do = Io(X). (30) 

0 
The following formulae from the theory of Bessel 
functions are also collected for convenient reference: 

2n 
1 

~ f cos mo exp (z cos O) do = Im (z), (31) 
2~ 

0 2n 

f s in  mo exp ( - z  cos 0) do = 0, (32) 
o 

Io[(z~ + z~ + 2z~ z~ c o s  o )v~ ]  = I.(z,) I.(z~) 
co 

+ 2 ~. I ; (z  1) Ip(zz) cos PO. (33) 
p=l  

4. The distribution of  tph given the distributions of  ~[)k 
and tPh-k 

In the following we will suppose that the moduli of the 
normalized structure factors are known without uncer- 
tainty. In tangent schemes, however, Ok and 0h-k are 
usually uncertain and have an associated variance; thus 
the crude application of (3) overestimates the reliability 
of Oh. However, if P(Ok) and P(Oh-k)  a r e  known, then 
P(0hl 0k,0h-k,G) can be replaced by 

27t 2n 
f f P(~l~,~-k,G)P(Ok)P(Oh-k)dOkdOh-k. (34) 
0 0 

In (34), Rh, Rk, Rh-k and the conditional probability 
distributions of ~ and ~ - k  are the a priori information 
available. It is no matter in our approach what kind of a 
priori information has been exploited in order to define 
P ( ~ )  and P(0h-k)- We only suppose that P(0k) and 
P(tph-k) are distributed according to M(~k;0k,ak) and 
M(0h_k;~h_k ,  Oth_k) , respectively. Furthermore, in accor- 
dance with the usual tangent procedure, (34) requires 
that the distributions of Ok, 0h-k around their expected 
values Ok, 0h-k are mutually independent. From now on 
we will refer to (34) as P(OhllOk, Oh-k). Then 

P ( ~ I I ~ ,  ~ - k )  ~-- [2 rd0(G) 2rd0(ak) 2~0(ah-k)]  -1 

2~t 27t 
x f f exp (Q) d ~  d0h-k, (35) 

0 0 

where 

Q = G cos (Oh -- 0k - -  0h-k) + Ctk COS (0k --  ~k) 

+ ah-k COS (0h-k -- 0h-k). (36) 

If terms in (36) which depend on Oh--k are combined, the 
integration in (35) with respect to 0h-k may be 
performed according to formulae (27)-(30) .  Then 

P(~hl l  Ok, ~ h - O  '~ (2zO -2rIo(G) Io(ak) I0(ah -k) l - '  
2~t 

× f lo(Xl) exp ak COS (Ok -- 0k) d0k, 
0 

(37) 
where 

X l = [G 2 + O~2_k -[-- 2Gt~h-k COS ( ( P h -  O k -  0h-k)]  1/2. 

Expanding lo(X 1) according to (33) and integrating 
(37) with respect to ~ by (31) give 

1 1 ~o 
P(OhllOk, Oh_k) "~ - -  + -- ~ Dp(G) Dp((tk) Dp(ah-k) 

27r 7~ 
p = l  

× COS P ( 0 h -  0 k -  0h-k).  (38) 

Equation (38) is the result of a twofold convolution of 
Von Mises distributions. Because of § 2.5 we can 
approximate (38) by the Von Mises distribution 

P(Ch) - [2 7r-/0(ah)] -1 exp[ah COS(Oh-- 0 k - -  0h-k)] ,  (39) 

where C~h is the solution of the equation 

D,(ah) = D,(G) D,(ak) D,(ah-k). (40) 

Equation (39), as (3), has its maximum when 0h = 0h = 
0k + 0h-k, where ok and 0h-k are the 'known' phase 
values of ~ and 0h-k in standard tangent procedures. 
The asymptotic behaviour of (39) may be described by: 
(i) let ~ and ~ - k  be a priori known without 
uncertainty. Then Dl( t tk)  and Dl(t th_k)  equal unity so 
that (39) reduces to (3). From a mathematical point of 
view this case involves in (34) the conditions P(Ok) = 
fi(0k -- 0k) and P(Oh-k) = 3(Oh-k -- 0h-k) where 3(x) 
is the Dirac function; (ii) if Gk or (and) Gh-k is (are) 
equal to zero, the ~ h vanishes too. From a mathematical 
point of view the twofold convolution of the probability 
functions involves one (two) uniform distribution(s) 
and gives a uniform distribution for Oh. 

Table 2. Values of (th calculated from equation (40 ) fo r  
given values of G, (tk and ah_k 

G 

3.0 

Ok tth-k tth 

6.0 8.0 2-0 
3-0 4.0 1.4 
3.0 3.0 1.3 
2.0 3.0 1.0 
2.0 2.0 0.9 
2.0 1.0 0-6 
l-0 1.0 0.4 
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In order to give a practical idea of the effects of (40), 
the values of ah for appropriate values of G, ak and ah-k 
are given in Table 2. 

5. The distribution of ~h given the distribution of more 
pairs ~k, ~Jh--k 

Let us suppose that a phase (Ph may be assigned by 
tangent methods via two triplet relationships involving 
the pairs (~ , ,  ~-k,) ,  (~2, qTh-k,). Provided the distri- 
butions of ~ , ,  ~-k, ,  ~ , ,  ~ -k ,  (a) are mutually 
independent, (b) are known to be the Von Mises distri- 
butions M((Pk,;Ol, al)  , M ( t P h _ k , ;  0~, a ~ ) ,  M((/Tk2;O2, a2), 
M(tPh-k,; 0~, a~), respectively (in other words 01, 0~, 02, 
O~ are the 'known' values of ~Pk,, tPh-k,, ~Pk,, tPh--k,); then 
the distribution of ~ may be written, in accordance 
with § 4, as 

P(cPl IlCpk,, (Ph--k,, 09k2, (Ph--k2) 
2n 2n 

'~ f ' ' "  f e((pk,) e(fPh-k,) e((Pk2) e(fPh-k2) e(fphlfPk,, 
0 0 

• " ", (Ph--k 2, G1, G2) d(pk,.., dqTh--k2 

= (2 zO-5 [Io(~h) Io(a,) Io(a[) Io(a2) I o ( ~ ) ] - '  
2~ 2~ 

x f . - .  f exp (Q) d ~ ,  dtph-kl dtpk2 d ~ h - k  2, 
0 0 

(41) 

where 

Q = Q1 + Q2, 

Q1 = G1 cos ( ~  - ~ ,  - ~Ph-k,) + al COS (~Pk, -- 0a) 

"~- O~ I COS ( ( ~ h - - k , -  0~), 

Q2  - -  G2  c o s  (¢Ph - -  qTk2 - -  (Ph--k2) + a 2 COS (qTk2 - -  02) 

-~- a~ COS ( ~ n - k 2 -  0~), 

G 1 = 2Rh Rk, Rh-k,/v/-N, 

G 2 ---- 2Rh Rk 2 Rh_kJv/'N, 

Yh = [G 2 + G2 2 

+ 2G z G 2 c o s  (¢Pk, + ( P h - k , -  (pk 2 - -  (Ph--k2)] 1/2. 

The integration of (41) is not straightforward, mostly 
because I0(~) depends on the variables ~0k,, q~h-k,, tpk,, 
~--k,. We introduce therefore the following approach. 
We first make the approximation 

P(tp I tpk,,..., (~h--k,, G I, G2) 

~_ SP(~I ~, ,  ~-k , ,  GI) P(qThl qTk2, (Ph-k 2, G2), 

where S is a suitable normalizing factor. Now the right 
hand side of (41) becomes 

2n 2n 

1 f f  S (270---- 3 io(Glj Io(al) Io(a~) exp Q1 dqTk, dqTh-k, 
0 2n 2~t 

1 1 
x(2zO3lo(G2)io(a2)io(a~):: expQ2d~°k2d~°h-k: 

(42) 

which, because of the results described in § 4, reduces 
to 

S[2zff0(fll)] -1 exp [ill cos (tph-- 01 -- 0~)] [2nI0(f12)] -1 

× exp [fiE cos (q~-- 02 -- 0~)]. (43) 

In (43), fll and fiE satisfy 

D,(fll) = D,(G1) Dl(al) Dl(a~), 
D,(fl2 ) = D,(G2) Dl(a2) Di(a~), 

respectively. The normalization of (43) leads then to 

P ( ~ I I ~ , , . . . ,  ~ - k . )  

~-- [2 rd0(ah)] -1 exp [ah COS (~0h-- Oh)], (44) 

(I 
=1 

where 

(45) 

m 
Z pssin(Os + 0~) 

j = l  
tan Oh = , (46) 

m 

Y  jcos(0j + o;) 
j = l  

and m = 2. 
If ~ may be estimated by m > 2 pairs (tpk,, ~0h-k,), 

(44), (45) and (46) are still valid whatever m may be. 
(46) is our weighted tangent formula. We note that the 
weights W which appear in (7) do not appear explicitly 
in (46); furthermore, 0 s and Oj are the same quantities 
as tpkj and ~Ph-k: ah as given by (45) measures the 
accuracy with which the value Oh has been assigned to 
qTh. 

6. Weighting criteria for phases not evaluated by Von 
Mises distributions 

One-, two-, three-phase structure seminvariants and 
four-, five-phase structure invariants are not distri- 
buted according to Von Mises distributions, even if in 
several cases useful Von Mises distributions have been 
devised which reliably estimate them (Giacovazzo, 
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1976, 1977, 1978). When a phase tp is estimated by 
probabilistic formulae, both the expected value 0 and 
the variance value v are usually evaluated. It may be 
expected that without large error, tp can be used as a 
known phase in tangent procedures as it was distri- 
buted according to M(tp;O,a), where a is the value of 
the concentration parameter which corresponds to the 
variance v. 

7. The sign probability for E h given the sign prob- 
abilities for Eke, Eh--kl, Ek2, Eh--k2,... 

For the centrosymmetric space groups we will denote 
by Sh, Sk,..., the signs of Eh, Ek,..., and by Sh,k the sign 
of any triplet EhEkEh-k. As is well known (Cochran & 
Woolfson, 1955~the probability density of Sh,k given G 
: -  Rh Rk Rh-k  / v/N is 

e(Sh, klG) ~--0.5 + 0.5 tanh G. (47) 

Correspondingly, the probability density for Sh given Sk 
and Sh-k is given by 

P(Shl Sk, Sh-k, G) ~- 0.5 + 0.5 tanh (Sh Sk Sh-k G). 

(48) 
In the practice of direct procedures, Sk and Sh-k are 
known with some uncertainty due to the fact that they 
are usually assigned by a probabilistic approach. Let Sk 
a n d  Sh-k have been assigned with probability values 
given by 

P ( S k )  ~ 0 .5  + 0 .5  tanh (SkO~k) , (49) 

P(Sh-k) ~ 0.5 + 0.5 tanh (Sh-kah-k), (50) 

respectively, no matter what kind of a priori infor- 
mation has been exploited in order to obtain (49) and 
(50). According to § 4, the probability density (48) may 
be replaced by 

P(ShllSk,  Sh-k)  P ( S h l  Sk, Sh-k,  G) 
Sk, Sh_k=+_ 1 

X e ( S k )  e(Sh-k). (51) 

The asymptotic behaviour of (51) may be described by: 
(i) if Sk and Sh-k are known to be equal to 0k and 0h-k 
without uncertainty, then 

P(Sk : Ok) : P(Sh-k : 0h-k) : 1, 

e ( S k  = --Ok) = e ( S h - k  = --0h-k) ~-- 0. 

Therefore (51) reduces to P(Shl Sk, Sh-k, G); (ii) if at 
least one of P(Sk) and P(Sh-k) equals 0.5 then also 
e(Shl lSk ,  Sh-k,  G)  equals 0.5. 

In order to show the differences between the 
probability values for Sh calculated according to (48) 
and (51), we give in Table 3, for a fixed sign probability 
calculated according to (48), the corresponding values 
of (51) when (49) and (50) assume some fixed values. 

Table 3. Values for Sh calculated from equation (51) 
for a fixed sign probability calculated by equation (48) 

Equations (49) and (50) assume some fixed values. 

(48) (49) (50) (51) 

0-95 0.95 0.95 0-86 
0.90 0-95 0.82 
0.90 0.90 0.79 
0.80 0.85 0.69 
0.80 0.80 0.66 

If the sign of Eh is estimated via r pairs Eke, Eh-k~, 
then the sign probability for Eh is given by 

P ( S h l  Sk,, Sh-k, ,  . . . .  Sh-k r) 
S k,, Sk2 ..... S h_ kr = + 1 

X e ( S k t ) e ( S h - k ~ ) . . . e ( S h - k , ) .  (52) 

The calculation of (52) may be time consuming when r 
is large. A useful approximation of (52) which has the 
advantage of being algebraically similar to the classical 
Woolfson formulation is 

P(Sh) = 0.5 + 0.5 tanh ~ flj, 
j= l  

where the flj's are obtained by the following two steps: 
(i) (51) is calculated for each pair Ekj, Eh-k,, let Pj(Sh) 
be its value; (ii) putting Pj = 0.5 + 0.5 tanhflj and 
inverting with respect to flj to give flj = 
arctanh (2Pj -  1). 

8. Weighting criteria for the starting set of phases 

To start the phase determination with tangent pro- 
cedure a number of phases are considered to be a priori 
known: (a) origin-defining phases; (b) symbolic phases 
to which all combinations of the values +n/4, +3n/4 
are given if the phases are non-centrosymmetrical, the 
value 0 or zc if they are centrosymmetrical; (c) phases 
anyhow determined by probabilistic formulae. 

Phases in categories (a), (b), (c) play a different role 
in the phase determination process. Furthermore they 
can be considered 'known' with different accuracy so 
that distributions proper to the category are needed. 

For the phases in (a), the problem is quite trivial. Let 
us suppose that the value of any origin defining phase 
tp can be arbitrarily fixed without error. If 0 is its chosen 
value, the theoretical distribution of tp can be assumed 
to be the Dirac function 3(~p -- 0). From our point of 
view this is equivalent to associating with tp the distri- 
bution M(tp;O,a), where a must be large enough to 
simulate (for the practice of tangent procedures) the 
Dirac function: a > 20 may be a reasonable choice. If 
~p is a centrosymmetrical phase, its sign can be con- 
sidered known with unitary probability. 
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Because of quadrant  permutation, the maximum 
error associable with any non-centrosymmetric reflex- 
ion ~0 belonging to category (b) is 45 °. Thus, for any 
permutation, ~o is uniformly distributed in one quadrant  
with expected value 0 equal to the mean direction of the 
quadrant,  and variance equal to 7t2/48. Our procedure 
suggests for ~ a Von Mises distribution with the same 
mean value and the same value of the variance, 
M(tp;0,5.5) can be a reasonable distribution. If ~ is 
centrosymmetrical,  the sign permutation process 
assigns to ~o all the symmetry allowed values. Thus for 
any permutation the value of ~ can be considered 
known without ambiguity. 

The procedure can be readily extended to the 'magic 
integers' representation of the phases. Main (1977) has 
given, for the most useful sequences of magic integers, 
the root mean square error involved in the represen- 
tation of phases. 

The use in tangent procedures of the phases in 
category (c) is discussed in § 6. 

9. Weights for centrosymmetric reflexions in non- 
centrosymmetdc space groups 

Let us suppose that ~h is a centrosymmetric reflexion 
and Ok, ¢h-k are general. If Cpk and ~0h-k are known 
without uncertainty, then 

P(Eh, ~ ,  ~ - k ,  Rk, Rh-k) 

1 1 [ 
----re 2 X/~-~ R 2 R , exp [-- - -  -- R~ -- 

EIR2R3 )] 
c o s ( ¢ 2 + ¢ 3  , 

from which 

1 
P ( ~ I  ~ ,  ~ - k ,  G')  ~ -~- exp [G' cos (~0h -- ~0k -- ~0h-k)]. 

L is a constant which does not depend on ~0h and G' = 
G/V~. Since q~h can assume two values only -- i.e. Oh 
and Oh + ~ -- we have 

exp [G' cos (Oh -- q~k -- ~0h-k)] 
P(0h](Pk, tPh-k, G ' )  ~'-- 

2 cosh [G' cos (Oh- ~0k- ~0h-k)] 

= 0" 5 + 0" 5 tanh [G' cos (Oh- ~0k- ~0h-k)]. (53) 

If the argument of the hyperbolic tangent is positive, the 
relation ~ = Oh probably holds, if it is negative then the 
value Oh + zc must be assigned to ¢h. The larger the 
absolute value of the cosine, the more reliable is the 
phase indication. If cos (Oh -- ¢k -- ¢h-k) = 0 then ¢h is 
not determined. 

This result may be extended to the more general case 
in which we know the distributions of ~0k and CPh-k. The 

procedure described in § 4 suggests that the right hand 
side of (53) is a useful approximation of P(0hll~k, ~0h-k) 
provided fl replaces G',  where 

Dl( f l )  = DI(G t) D l((lk ) Dl(f~h-k ). 

If several pairs ~j ,  ~-kj  contribute to define tph, then 

e(ohltl j, + 0.5  tanh [~. fljeos(Oh 
L J  

Let us suppose now that the argument of the hyper- 
bolic tangent is negative, then we will assign to q~h the 
value Oh + n with a probability larger than 0.5. What  is 
the weight to associate with the relation ~0b = Oh + n? In 
accordance with §6  we suggest the following 
procedure: 

(a) the variance of the relation tph = Oh + n is given 
by 

V = 7t2P(~/Th = Oh+ 7~) [1 - - P ( ~ h  = Oh+ 7~)]; 

(b) the concentration parameter of the Von Mises 
distribution with variance V is calculated and is used as 
ah. However, the procedure can strongly overestimate 
~h" 

10. Generalized tangent refinement 

So far we have described a tangent refinement 
procedure which only uses triplet relationships. 
However, tangent formulae which hold for quartet 
invariants and for two-phase seminvariants have 
already been given (Giacovazzo, 1976, 1977). Let us 
now calculate the reliability of q~h, when q~h2,'", tPhn are 
'known' under the hypothesis: (i) ~0h, + ' ' ' +  tph. is a 
structure seminvariant; (ii) the distribution of ~0h,, when 
~0h2, ..., qhn and a suitable set of diffraction magnitudes 
are known, may be approximated by the Von Mises 
distribution M(~0h,; 01, G); (iii) the distributions of ~0h2, ... .  
~0h~ are M(~0h2;t92,a2), .. . ,  M(q~h.;tgn,an). Then (40) is 
replaced by 

D,(a~) = D,(G) D,(a2)...D,(a,,). (54) 

The generalization of (45) and (46) is now straight- 
forward. An important conclusion arises from (53): the 
larger n is, the smaller in average will a I be. In other 
words, structure seminvariants with a small number of 
phases are in general more advantageous in tangent 
refinement than those with a larger number of phases. 
Therefore, an easy propagation of the errors must be 
expected for these seminvariants. 

11. Weighted Fourier synthesis 

At the end of the phasing procedure the final phases 
have associated a weights; small weights indicate 
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uncertain phases. Germain, Main & Woolfson (1971) 
showed that a Fourier synthesis with suitably weighted 
coefficients gives a higher signal to noise ratio than an 
unweighted E map. By a semi-empirical analysis, these 
authors suggested in the Fourier map 

p ( r ) =  Z IEhl exp (i0h) exp (--27dhr), (55) 
h 

the replacement of the coefficient I Ehl by 
[tanh (ah/2)] I Ehl. 

Our weighting scheme immediately gives the ex- 
pression of the weighted Fourier coefficient, provided in 
(55) exp( i~)  is replaced by its expected value [see 
Blow & Crick's (1959) criterion for the 'best Fourier']. 
If the phase ~ is supposed to be distributed according 
to M(0h;0h, ah ) and Oh is its assigned value, then 

2~ 

(exp i ~ )  ~_ f exp (/Oh) M(0h;0h,ah) d0h 
0 

=- Dl(ah ) exp (i0h). 

Finally, in (55) D~(ah) l Ehl should replace I Ehl. 
For centrosymmetric structures, or centro- 

symmetric reflexions in non-centrosymmetric struc- 
tures, the distribution of 0h is a two-value function: then 
(exp i ~ )  reduces to (Sh),  the expected sign of Eh. If 
the direct procedure assigns Sh to Eh with probability 
P(Sh), then 

( S h ) = [ 2 e ( s h ) - -  11. 

In conclusion, the coefficient of the Fourier synthesis 
should be [2P(Sh) -- I] Eh instead Of Eh. 

12. Concluding remarks 

Weighting schemes for tangent refinement are usually 
semi-empirical and are suggested by triplet conditional 
distributions giving the value of a phase when some 
others are exactly known. The present scheme is 
obtained theoretically, and it is able to predict the 
reliability of any individual phase when the distri- 
butions of other suitable phases are known. We 
emphasize the fact that our approach does not require 
that some phase values are known, but only that their 
distributions are known. Therefore it is able to take into 
account the uncertainty of the assigned phase values. 

The scheme does not force tangent-formula refine- 
ment to obey Sayre's equation, as Hull & Irwin's 
(1978) scheme does. However, probabilistic con- 
siderations can easily be found which force our 
weighting scheme to obey Sayre's equation. 

A fundamental hypothesis of the theory above 
developed is that, for a given h, the quantities Ok, + 
0h-kj, j = 1,..., n, are distributed around Oh according 
to Von MiNes distributions M(0k j + 0h-kj; Oh, Gj). 

If the model is to be practically useful, some kind of 
general agreement must be found between the 

theoretical propositions and the observations. For any 
h we have at our disposal a sample of n 'observed' 
values (the n assigned values 0kj + 0h-k) and we want to 
know if they can be reasonably regarded as drawn by a 
simple random sampling from populations having Von 
Mises distributions M(0k~ + 0h-k~; Oh, Gj). We can 
expect, if the hypothesis is true, that the sample values 
should form a statistical image of the hypothetical 
distribution. 

Let us now suppose that the algebraic form of the 
hypothetical distribution is known; we are concerned 
with the mean or some other characteristics of the 
distribution, and we ask whether the differences 
between the observed values should be ascribed to 
random fluctuations or judged to be significant. 

According to Hull & Irwin's (1978) scheme, we 
choose a as the characteristic to be investigated. The 
observed value of a as given by (6) (from now on aobs) 
may be compared with the expected value a E given by 
(10). If aob s ~ %, then the hypothesis about the distri- 
bution of the quantities 0kj + 0h-kj is disproved; small 
values of aobs correctly mark this situation. If aob~ ~-- aE, 
then the agreement between theory and observations is 
satisfactory and the phase Ch may be considered as well 
established. 

If aob s >> %, the observations are again inconsistent 
with the hypothesis; then Oh is not to be considered well 
established and a penalty for aob s should be introduced. 

In a forthcoming paper, practical aspects and 
applications of the theory above developed will be 
shown. We only anticipate here that the first tests will 
be successful even in cases where the application of the 
normal tangent formula is not very effective. 
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